Meissner, R.A. & Markey, A.S.

Two new Western Australian species of *Drummondita* (Rutaceae: Boronieae) from banded ironstone ranges of the Yilgarn Craton

A special edition funded by the Western Australian Government’s ‘Saving our Species’ biodiversity conservation initiative.

All enquiries and manuscripts should be directed to:

The Editor – NUYTSIA
Western Australian Herbarium
Dept of Environment and Conservation
Locked Bag 104 Bentley Delivery Centre
Western Australia 6983
AUSTRALIA

Telephone: +61 8 9334 0500
Facsimile: +61 8 9334 0515
Email: nuysia@dec.wa.gov.au
Web: science.dec.wa.gov.au/nuysia/

All material in this journal is copyright and may not be reproduced except with the written permission of the publishers.
© Copyright Department of Environment and Conservation
Two new Western Australian species of *Drummondita* (Rutaceae: Boronieae) from banded ironstone ranges of the Yilgarn Craton

Rachel A. Meissner and Adrienne S. Markey

Science Division, Department of Environment and Conservation, PO Box 51, Wanneroo, Western Australia 6946

Abstract

Meissner, R.A. & Markey, A.S. Two new Western Australian species of *Drummondita* (Rutaceae: Boronieae) from banded ironstone ranges of the Yilgarn Craton. *Nuytsia* 17: 273–280 (2007). Two new species of *Drummondita* Harv. are described, both of which occur on rocky hillsides on the Yilgarn Craton of Western Australia. One of these, *D. fulva* A.S.Markey & R.A.Meissn., has close affinities to *D. microphylla* Paul G.Wilson but differs in having a reddish apiculus on the leaf apex, tawny new growth, and sub-orbicular, flattened sepals. The other, *D. rubroviridis* R.A.Meissn, is closely allied to *D. wilsonii* F.H.Mollemans, from which it is distinguished by a combination of spreading leaves, solitary, larger red flowers with green petal lobes, and a pointed apical leaf gland. *Drummondita fulva*, is relatively widespread, occurring on both Banded Iron Formation and associated metasedimentary rocks in the Yalgoo region, while *D. rubroviridis* has a restricted distribution and appears to be endemic to a single banded ironstone range in the Koolanooka Hills. A taxonomic description of these two new species, images and maps of their respective distributions are provided.

Introduction

Drummondita Harv. (Rutaceae: Boronieae) is a genus of seven species endemic to Australia, many of which are rare and geographically restricted. The number of taxa in this genus has been expanding since Wilson (1971) reinstated *Drummondita* as a genus distinct from *Philotheca* Rudge. This paper describes two new species collected during Department of Environment and Conservation (DEC) flora surveys of greenstone and Banded Iron Formation (BIF) ranges in the Yilgarn Craton of Western Australia (Figure 1).

In a paper describing new taxa in *Drummondita*, Wilson (1998) referred to a collection from the Blue Hill Range (*R.J. Cranfield* 8586A, PERTH) as similar to *D. microphylla* Paul G.Wilson (note: in an editorial error *D. microphylla* was mistakenly referred to as *D. microcephala* in the notes section). This collection differed from the typical *D. microphylla* in leaf and floral characters. Wilson (1998) suggested that this variant may warrant recognition as a new taxon but did not describe it due to insufficient material being available. Recent flora surveys on the Blue Hills Range and adjacent BIF ranges in the Yalgoo-Paynes Find area (Markey & Dillon, in review) and in the Sandstone region (Meissner & Bayliss, unpublished data) have produced sufficient flowering and fruiting material to confirm that this taxon is distinct from *D. microphylla*. It is named here as *D. fulva* A.S.Markey & R.A.Meissn.
During a concurrent survey of the Koolanooka Hills, a nearby ironstone range east of Morawa, a distinct new species of *Drummondita* was also discovered. Notably, this taxon has distinct red petals tipped with green and is named here as *D. rubroviridis* R.A.Meissn.

Methods

This study was based on the examination of *Drummondita fulva*, *D. microcephala*, *D. rubroviridis*, and *D. wilsonii* Mollemans specimens lodged at the Western Australian Herbarium (PERTH). Vegetative, floral and seed measurements were made from dried herbarium specimens. Field observations were collated during DEC floristic surveys of BIF landforms. Descriptive terminology follows that of Wilson (1998). Precise localities are withheld due to conservation concerns. Distribution maps are based on the Interim Biogeographic Regionalisation for Australia (IBRA) Version 6.1 (Thackway & Cresswell 1995; Western Australian Herbarium 1998–; Environment Australia 2000; Department of Environment and Water Resources 2007) and were generated from records held at PERTH using ARCGIS v 9.0 (ESRI 2004).
Taxonomy

Drummondita fulva A.S.Markey & R.A.Meissn., sp. nov.

Drummonditae microphyllae Paul G.Wilson affinis sed ramulis nitido ligno-brunneis, apiculis foliorum rubro.

Typus: Karara Station, Western Australia [precise locality withheld for conservation purposes], 16 September 2005, _A. Markey & S. Dillon_ 3359 (holo: PERTH 07349734).

Shrubs 0.5–1.5 m tall, erect, branching, ericoid. _Branchlets_ glabrous, cuticle glossy and tawny when young, with short, raised, rounded, glandular-verrucose ridges decurrent from leaf bases. _Leaves_ fleshy, green, clavate, crowded, with marginal ciliate hairs, sulcate above, glandular below, (1.6–)2–3.2(–3.6) mm long, 0.8–1.1 mm wide, with a terminal reddish brown apiculus; petiole to 0.5 mm. _Flowers_ terminal, solitary, 10–17 mm long. _Pedicel_ to 1.5 mm. _Sepals_ unequal, sub-orbicular, (2.6–)3.2–4.5(–5.2) mm long; sparsely ciliate, otherwise glabrous, green, turning red with age; margin chartaceous. _Corolla_ tubular; petals narrowly oblong-ovate, 9–14 mm, red. _Staminal tube_ c. 10 mm long, with dense white silky hairs on the upper third, the hairs and tube turning red with age; anthers (1.2–)1.5–2.5 mm long. _Seeds_ reniform, glossy, dark brown to black, with a white aril, 3–4 mm long, 1.5–2.4 mm wide. (Figures 2, 3)

Distribution and habitat. This species is located in the Yalgoo Region of the Eremaean Botanical Province (Figure 3). _Drummondita fulva_ generally occurs on the footslopes, lower slopes to upper slopes and hill crests of BIF and associated metasedimentary bedrock. It has been recorded on skeletal, shallow, acidic soils of orange-red or red-brown sandy loams and clayey silts. There is one record of _D. fulva_ from the footslopes of a granite outcrop (A.L. Payne 3804).

Drummondita fulva is found in sparse to open tall shrublands dominated by _Acacia_ (_A. sibina, A. ramulosa_ var. _ramulosa, A. burkittii, A. aneura, A. sp. Murchison_ (B.R. Maslin 1331), _A. aulacophylla_), _Allocasuarina acutivalvis, Melaleuca nematophylla_ and _Calycopezus paucifolius_. The lower shrub layer typically includes _Hibbertia arcuata, Philotheca_ spp. (_P. sericea_ or _P. brucei_), _Aluta aspera_ subsp. _hesperia_ and _Eremophila latrobei_.

Phenology. Flowers and fruits from September to October.

Conservation status. Recently listed as Priority Three under DEC Conservation Codes for Western Australian Flora. Results from recent DEC flora surveys on the ironstone and greenstone ranges throughout the northern Yilgarn region (Markey & Dillon, in review; Markey, pers. obs.) suggest that this species is restricted to BIF hills between Perenjori, Paynes Find and Yalgoo (Figure 1). It is locally
Figure 2. *Drummondita fulva* holotype (A. Markey & S. Dillon 3359), scale = 3 cm.
abundant within its range, but restricted to rocky hills and breakaways within a relatively small area. Many of these landforms are under mining and exploration tenements.

Etymology. The epithet is from the Latin *fulvus* (tawny), in reference to the tawny brown colour of the branchlets which distinguishes this taxon from *D. microphylla*.

Affinities. Closely related to *D. microphylla*, sharing the same leaf arrangement, size and shape as well as floral size and colour, but differs by the presence of glossy tawny branchlets, ciliate young leaves, reddish-brown leaf apiculus and sub-orbicular, flattened sepals.

Notes. The reddish brown colour of the leaf apiculus is not always evident on dried specimens but the combination of other distinguishing characters are consistent in their co-occurrence.

Drummondita rubroviridis R.A.Meissn., sp. nov.

Drummonditae wilsonii Paul G.Wilson affinis sed foliis patentibus latioribus glande apicali acuta, floribus solitariis, calyce parviore, tubo floralis longiore, et lobis petalorum viridibus differt.

Shrubs 1.5m tall, erect, branching, straggly. Branchlets sparsely hairy when young, with long, raised, rounded, glandular-verrucose ridges decurrent from leaf bases, becoming prominent with age. Leaves green, linear-clavate, spreading, with marginal hairs, sulcate above, verrucose glandular below, 4.0–6.5(–9) mm long, 1.0–1.5 mm wide, mucronate with an apical gland; petiole to 0.5 mm. Flowers terminal, solitary, subsessile, 13–17 mm long. Pedicel to 1 mm long, fleshy. Sepals equal, ovate, 2.4–3.8 mm long, sparsely ciliate, otherwise glabrous, green, glandular, turning red with age; margin chartaceous. Corolla tubular; petals oblong-ovate, 11–15 mm long, red with green lobes, shortly ciliate. Staminal tube c. 15 mm long, with dense silky hairs on the upper third, the hairs and tube turning red with age; anthers 2.4–3.2 mm long. Seeds reniform with an end flattened, glossy, dark brown, with a white aril, 2.7–3.4 mm long, c. 1.6 mm wide. (Figures 4, 5)

Distribution and habitat. This species is known only from the Koolanooka Hills, east of Morawa in the Avon Wheatbelt of the South West Botanical Province. The species is found in very low numbers on the slopes and crests of banded ironstone. It grows in sandy loam soil, in open mallee forests of Eucalyptus ebbanoensis, Allocasuarina acutivalvis and Melaleuca spp. over shrublands of Acacia nigripilosa subsp. nigripilosa, Hibbertia aff. exasperata, Dodonaea scurra and Aluta aspera subsp. hesperia.

Phenology. Flowers in September to October, with fruit recorded in October.

Conservation status. Recently listed as Priority One under DEC Conservation Codes for Western Australian Flora. Currently, this species is known only from the Koolanooka Hills (Figure 1), an area of approximately 3500 ha, that is under several mining and exploration tenements. Further targeted surveys are required to determine the endemicity and population size of D. rubroviridis, owing to its low abundance and restricted distribution.

Etymology. The epithet is from the Latin ruber (red) and viridis (green), referring to the flower colour, which is predominantly red with the petal apices being green.

Affinities. Drummondita rubroviridis is allied to two restricted species: D. wilsonii, a Priority One species endemic to the Parker Range, c. 600 km southeast of Koolanooka; and D. ericoides Harv., a Declared Rare species found only on the Moresby Range north of Geraldton. These two species belong to the D. ericoides group along with D. miniata (C.A.Gardner) Paul G.Wilson. All of these species are found in similar habitats of rocky terrain and skeletal soils (Mollemans 1993).

Drummondita rubroviridis appears most similar to D. wilsonii, in having the same leaf shape, gland characters and floral colour, but differs in its spreading, wider leaves, pointed apical leaf gland, solitary flowers, smaller calyx, longer floral tube and green petal apices. Drummondita ericoides is also similar to D. rubroviridis in having solitary flowers and similar sized leaves that have terminal mucronate glands, but is distinguished by its crowded leaves, scattered leaf glands and yellow flower colour.

Notes. The green petal apices of D. rubroviridis can vary in intensity in the field. Colour can also fade on dried specimens (Figure 5B). Drummondita rubroviridis can be a cryptic plant due to the straggly habit and can be easily overlooked even when flowering.
Figure 4. *Drummondita rubroviridis* holotype (R. Meissner & Y. Caruso 67), scale = 3 cm.
Figure 5. *Drummondita rubroviridis*. A – flower, photograph by R. A. Meissner; B – scanned image from a portion of the holotype (*R. Meissner & Y. Caruso 67*) showing a dried flower and the pointed apical leaf gland, scale = 5 mm.

Acknowledgments

The authors would like to thank Steve Dillon and Yvette Caruso for their hard work during the flora surveys and Kelly Shepherd for her advice and help during the preparation of this paper. Also, we would like to thank Paul Wilson for providing the Latin translation. The DEC floristic surveys of the Banded Iron Formations of the Yilgarn Craton was funded by the Western Australian Government’s ‘Saving our Species’ biodiversity conservation initiative.

References

